
 1 

 1 

Assessing Future Changes of Climate and Drought over the South-Central United States 2 

Projected by the CMIP5 Models  3 

Rong Fu, Nelun Fernando*, Lei Yin, Tong Ren, Ze Yang, Adam Bowerman, Robert E. 4 

Dickinson 5 

Jackson School of Geosciences, The University of Texas at Austin 6 

*University Corporation for Atmospheric Research, Postdocs Applying Climate Expertise 7 

(UCAR-PACE) Postdoctoral Fellowship Program 8 

 9 

  10 

11 



 2 

Abstract: 12 

 Nine climate models that participated in the Inter-governmental Panel for Climate 13 

Change (IPCC) Fifth Assessment Report (CMIP5) realistically capture the general patterns of 14 

seasonal cycle, the probability distributions of rainrate and surface daily maximum and minimum 15 

temperature (Tmax, Tmin), and the statistical distributions of the drought indices over the south-16 

central United States (SC US).  However, most of them have wet and cold biases in precipitation 17 

and Tmax, and underestimate non-rainy days and heavy to violent rainfall events and 18 

overestimate moderate rain.  These biases are consistent with their underestimates of the 19 

latitudinal gradient of 500 hPa geopotential height in winter and spring, the strength and extent 20 

of the mid-tropospheric geopotential ridge, and the lower tropospheric westerly winds in 21 

summer.  The former allows more frequent passages of synoptic disturbances during winter and 22 

spring, whereas the latter weakens the circulation pattern in favor of summer droughts.  Although 23 

a few models can partially capture the Pacific-North American wave-train patterns, the models 24 

cannot fully capture the tele-connection patterns associated with El Niño-Southern Oscillation 25 

(ENSO) and its influence on rainfall anomalies over the SC US.  Only CCSM4 reproduces the 26 

observed global SST warming mode and its relationship with an increase of summer rainfall over 27 

the SC US, and also out-performs other models in realistically representing most of the metrics 28 

used in our evaluation. Examination of multi-model ensemble mean and “the best performing 29 

model” (CCSM4) suggests that projection of drying for the SC US under the RCP4.5 is 30 

ambiguous, but under the RCP8.5 scenario it is robust.   31 

 32 

  33 

34 
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1. Introduction 35 

         The worst single year drought over the SC US in 2011 and the worst drought in 60 years 36 

that a much large fraction of the US is experiencing in 2012 are vivid reminders of the 37 

vulnerability of our society to droughts. To improve drought resilience, regional decision makers 38 

need to know whether and how climate will change, especially whether the statistical 39 

characteristics of droughts and extreme surface temperature and rainfall will change, in the 40 

future.  The climate projections by the CMIP5 modeling groups provide key information for 41 

regional decision makers.  However, large inter-model discrepancies and apparent disagreement 42 

with observed changes during the past century over this region have largely prevented regional 43 

stakeholders from incorporating climate projections into their planning activities so far.  44 

         The climate community has done extensive research to assess future climate change, and 45 

the underlying mechanisms driving climate over the southwest and southeast US and the US 46 

Great Plain (e.g., Seager et al. 2007, Cook et al. 2008; Li et al. 2011) using the Coupled Model 47 

Intercomparison Project Phase-3 (CMIP3) model outputs. However, few studies have focused on 48 

future climate changes over the SC US.  Consequently, regional stakeholders only have access to 49 

studies that primarily focus on the SW US and the Great Plains (e.g., Seager et al. 2006; Karl et 50 

al. 2009).  Recently, several studies have assessed future climate changes over Texas (Mishra 51 

and Singh 2009; Jiang and Yang 2012).  However, the reliability of climate projections for this 52 

region has not been investigated thoroughly. 53 

         Although drought has occurred frequently in recent years, mean annual rainfall over the 54 

SC US has been increasing over the last century (e.g., Dai et al. 2004; Trenberth et al. 2007). 55 

This increase of rainfall appears to be correlated with the global scale SST warming (Wang et al. 56 

2010).  By contrast, CMIP3 climate models have collectively projected a decrease of winter and 57 
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spring rainfall by 5% to 30% by the late 21st century (Karl et al. 2009, Jiang and Yang 2012). 58 

Can climate models adequately represent the change of rainfall response over the SC US 59 

resulting from global climate change?  To clarify this question, we evaluate CMIP5 climate 60 

models (Taylor et al., 2012).  These models have included more comprehensive representations 61 

of many climatic processes with finer spatial resolution and more ensemble members of 62 

simulations for each model and scenario compared to the CMIP3 models.  How realistically do 63 

they represent current climate?  What model qualities affect climate projections for the SC US? 64 

The ultimate aim is to inform regional decision makers and so improve regional drought 65 

resilience.  66 

 Whether model quality would have a significant impact on climate projections has been 67 

debated.  For example, Pierce et al. (2009) show that an ensemble mean, especially a multi-68 

model ensemble mean projection, can out-performs the best quality model because the former 69 

allows cancellation of offsetting errors in the individual global models.  70 

 However, over some regions, models may share a similar bias that cannot be effectively 71 

reduced by a multi-model ensemble averaging.  Then, models realistically representing the 72 

controlling mechanism of regional climate variability and its sensitivity to global climate change 73 

could provide another constraint on uncertainty of the climate projections.  In addition, a 74 

demonstration of model quality in many cases is a prerequisite for policy makers to incorporating 75 

climate projection into their decision making processes. 76 

 The selection of metrics can strongly influence the relevance of model evaluation for 77 

improving climate projections.  Past studies have focused on assessment of climatology, natural 78 

variability and trends, important measures of the model creditability, but not providing 79 

information about whether a model adequately captures regional climate sensitivity to 80 
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anthropogenic forced global climate change.   For example, an evaluation of trend for the period 81 

of a few decades with a few climate model simulations can be strongly influenced by random 82 

internal variability, i.e., an agreement between a modeled and observed variable can be a random 83 

coincidence, rather than a demonstration of the capability of a model for prediction.   84 

        One way to evaluate regional climate sensitivity is to examine the relationship between 85 

regional climate change and the global warming trend, rather than a regional climate trend alone. 86 

Such a relationship can be evaluated by observations.  This study develops such a relationship as 87 

a key metric in ranking the quality of climate models. It is used with other metrics that evaluate 88 

key large-scale circulation variables and their relationships with ENSO, AMO and global SST 89 

warming pattern, in order to evaluate projections of future climate by a multi-model ensemble 90 

and a “best performing model”. 91 

 92 

2. Description of Datasets, Models and Methodologies 93 

2.1 Datasets:  94 

 We used the CPC US-Mexico daily gridded rainfall dataset (Higgins et al., 1996) over the 95 

domain 22.5°N-40°N and 110°W-90°W.  It comprises an archival (from 1948-2004 at 1° 96 

resolution) and a real-time (2001 to present at 0.25° resolution) component that we combined to 97 

obtain a continuous time series from 1950-2005.  These data are re-mapped to a 2.5° resolution 98 

to match the lowest resolution of the CMIP5 models.  Daily Tmin and Tmax were obtained from 99 

the Global Historical Climatology Network (GHCN) dataset (Vose et al., 1992), and gridded to 100 

2.5° resolution using the Weaver Analysis technique.  In the absence of adequate long-term 101 

measurements of evapotranspiration (ET), we use the monthly ET provided by the North 102 

American Land Data Assimilation (NLDAS) of the Goddard Land Data Assimilation Data 103 
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System (GLDAS) (Rodell et al., 2004) obtained from http://mirador.gsfc.nasa.gov.  The monthly 104 

SSTs data are obtained from the Extended Reconstructed Sea Surface Temperature dataset 105 

(ERSSTv3b, Smith et al., 2008) for the period 1901-2005, and the fields of 500 hPa geopotential 106 

height (Z500), and zonal and meridional winds at 850 hPa (U850, V850) are obtained from the 107 

National Center for Environmental Prediction (NCEP) reanalysis (Kalnay et al., 1996; Kistler et 108 

al., 2001) 109 

 110 

2.2 CMIP5 models and the simulations used in this study  111 

 CMIP5 is organized by the World Climate Research Programme (WCRP) in order to 112 

facilitate the IPCC AR5. It’s model archives have been collected by the Program Climate Model 113 

Diagnosis and Intercomparison (PCMDI).  Over 20 modeling groups from all over the world 114 

have participated in this project and conducted a variety of designed experiments (Taylor et al., 115 

2012).  We selected the following models as described in Table 1. Except for GFDL-ESM2M 116 

and GFDL-ESM2G, each model has more than three ensemble members for a specific 117 

experiment or scenario.  We use ensemble averages for each model to improve the signal-to-118 

noise ratio of the modeled fields and to give an equal weight to each model in the multi-model 119 

ensemble mean.  GFDL-ESM2M and GFDL-ESM2G each only provide one simulation per 120 

experiment.  Their results can be strongly influenced by random noisy.  The historical 121 

simulations are driven by all the natural and anthropogenic forcings and are mostly from 1850 to 122 

2005. We used the time period of 1950-2005 for model evaluation when observations are of 123 

adequate quality, and the period of 1979-2005 as the reference to compare with the projected 124 

climate for the period of 2071-2100 derived using the Representative Concentration Pathways 125 

(RCPs, Meehl and Hibbard, 2007a; Hibbard et al, 2007; Moss et al, 2010) scenarios of RCP4.5 126 
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and RCP8.5 that assume that the radiative forcing will be stabilized at 4.5 Wm-2 and 8.5 Wm-2, 127 

respectively, after 2100. 128 

 129 

2.3 Metrics of model evaluation 130 

         Gleckler et al. (2008) and Pierce et al. (2009)  have recommended metrics for a 131 

comprehensive evaluation of the general performance of global climate models.  However, to 132 

focus on assessment of droughts and their controlling processes over the SC US, we select a 133 

subset of the climate variables from the recommended metrics that are highly relevant to the 134 

processes that control the development and occurrence of droughts.   135 

  Previous studies have shown that a persistent high pressure system and middle 136 

tropospheric ridge, and dry land surface are key conditions for summer drought over SC US 137 

(e.g., Hong and Kalney 2002, Myoung and Nielsen-Gammon 2010).  Strong westerly winds 138 

advect dry and warm air from the Mexican Plateau and Rockies to the SC US and enhance cap-139 

inversions in the lower troposphere.  Lower tropospheric southerly winds bring warm and humid 140 

air from the Gulf of Mexico, creating a favorable condition for rainfall.  Dry conditions during 141 

late spring sets the stage for summer droughts.  Prolonged droughts from winter to summer often 142 

lead to extreme droughts.  These conditions also favor the occurrence of extreme summer surface 143 

temperature, because of strong inverse correlation between high surface temperature and dry 144 

land surface in this region (Madden and Williams 1978). 145 

 Drought over the SC US is initiated by La Niñas in boreal winter, and could be 146 

intensified by a positive phase of the Atlantic Multi-decadal Oscillation (AMO, McCabe et al. 147 

2004; Hu and Feng, 2008, Mo et al. 2009, Kushnir et al. 2011, Nigam et al. 2011).  However, 148 

ENSO and AMO are random modes of internal variability.  Thus, we focus on the realism of 149 
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ENSO teleconnection pattern and the relationship between regional rainfall anomalies and ENSO 150 

and AMO.  We separately evaluate the tele-connection patterns for the eastern Pacific warming 151 

(EPW) Niño and the central Pacific warming (CPW) Niño, respectively, because they have 152 

different impacts on US climate (Mo 2009), and the occurrence of these two types of ENSO may 153 

be influenced by anthropogenic forced warming (Yeh et al. 2009).  A couple of centuries could 154 

be needed to adequately assess ENSO and AMO variability (Wittengberg 2009; Stevenson 155 

2012).  Thus, significance of our evaluation on how such natural climate variability influences 156 

the SC US climate is somewhat limited by lengths of climate records and historical simulations.   157 

 In addition, Wang et al. (2010) have suggested a statistical correction between an 158 

increase of summer rainfall over SC US and global increase of SSTs.  Because this global 159 

increase of SST is attributable to anthropogenic forcing (e.g., Barnett et al. 2001), we will 160 

evaluate this relationship as an indicator of regional rainfall sensitivity to forced global climate 161 

change.   162 

 The multi-model ensemble mean may not be more reliable than the “best performing 163 

model” when a majority of the models share common biases.  However, “best performing 164 

models” are limited by insufficient samples and statistical representation of the variability of the 165 

climate system.  Thus, we evaluate historical simulations of both multi-model ensemble means 166 

and best performing models, and assessing the robustness of the climate projections based on the 167 

consistency between them. 168 

 169 

2.4 Analysis methods  170 

 The SC US domain in our analysis includes Texas and portions of New Mexico, 171 

Oklahoma, Louisiana, Arkansas, Kansas and Missouri (Fig. 1).  Because severe to extreme 172 
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drought over the SC US are caused by persistent water deficit over two to three seasons, we 173 

evaluate the modeled 6- and 9-monthly Standardized Precipitation Index (SPI6 and SPI9) 174 

calculated (McKee et al. 1993) using monthly mean precipitation derived from the US-Mexico 175 

daily gridded precipitation dataset. Because we are interested in the changes of SPI6 and SPI9 176 

relative to present-day climatology, we normalize the rcp4.5 and rcp8.5 precipitation data for 177 

2070-2099 with the mean and standard deviation of precipitation from base period of 1970-1999. 178 

The normalization is carried out prior to calculating SPI6 and SPI9 using projected precipitation. 179 

 Follow Schubert et al. (2009), the global SST warming mode is represented by the 180 

leading mode of the Rotated Empirical Orthogonal Function (REOF, Barnston and Livezey, 181 

1987; O’Lenic and Livezey, 1988) of the annual and summer (JJA) global sea surface 182 

temperature (SST) anomalies. The Niño3 and Niño4 are computed as the domain averaged SST 183 

anomalies over the region of 150°W-90°W and 5°N-5°S, and of 160°E-150°W and 5°N-5°S, 184 

respectively. The Atlantic Multidecadal Oscillation (AMO) is described as the area weighted 185 

average of SSTA over the northern Atlantic, basically from 0 to 70°N (Endfield et al. 2001). The 186 

detailed calculation procedure is found on NOAA/ESRL website: 187 

http://www.esrl.noaa.gov/psd/data/timeseries/AMO/.  Statistical significant tests of correlation 188 

coefficients are determined by the Student-T test. 189 

 190 

3. Evaluation of Historical Simulations  191 

3.1 Regional climatology and variability 192 

a. Surface conditions 193 

         Figure 2 compares the seasonal cycles of surface air Tmax, Tmin and surface air specific 194 

humidity (q) simulated by the 9 CMIP5 models to those derived from the GHCN data, NOAA 195 
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CPC US-Mexico daily gridded datasets and NCEP CDAS-1. The models capture the seasonal 196 

variations of Tmax and Tmin over the SC US.  However, the models appear to consistently 197 

underestimate Tmax values by as much as 5-7 °C during winter, and spring and fall (Fig. 2a).  In 198 

summer, Tmax values in one third of the models (HadGEM2-CC, CCSM4 and MIROC5) agree 199 

with observations, but they are underestimated in two-thirds of the models by as much as 5 °C.  200 

The multi-model ensemble mean shows a similar patterns and biases as those of individual 201 

models.  202 

         Tmin values in most of the models and multi-model ensemble mean agree well with that 203 

observed (Fig. 2b).  MIROC, CCSM4 overestimate Tmin by 1-2 °C in summer and fall, whereas 204 

HadGEM2, IPSL over underestimate Tmin by 3 °C in winter.  The modeled surface air specific 205 

humidity agrees well with the observation, except for HadGEM2-CC and IPSL (Fig. 2c). 206 

         Figure 3 compares the modeled seasonal cycles of precipitation (P), evapotranspiration 207 

(ET) and P-ET to those observed.  Observations show that rainrate over the SC US is generally 208 

higher than 2 mm/day during April to October and below 1.5 mm/day from October to March.  209 

Peak rainfall occurs in May, about 2.5 mm/day, and annual minimum occurs in January, ,about 210 

1.5 mm/day.  The CCSM4 and MPI best capture this seasonal pattern.  HadGEM2, GFDL-211 

ESM2M and MRI show a spurious mid-summer dry period, leading to a semi-annual cycle 212 

peaking between spring and early fall.  IPSL shows a short summer peak of rainfall with very dry 213 

spring and fall seasons.  Except for IPSL, models consistently overestimate rainfall by 0.5 to 1 214 

mm/day with large inter-model discrepancies during spring and summer seasons.   215 

         Figure 3b shows that models generally capture the seasonal cycle of ET shown by 216 

NLDAS, although two-thirds of them underestimate the values of ET.  The GISS model 217 

overestimates ET by as much as 250%, whereas IPSL and CCSM4 underestimate ET by nearly 218 
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30% in summer.  The high bias of multi-model ensemble mean is largely due to strong bias of 219 

GISS model.  220 

 P- ET represents the net water flux available to the surface, thus it has strong influence on 221 

meteorological drought and wet surface and flood. Figure 3c shows that P-ET estimated by 222 

observation and NLDAS is positive during fall, winter and spring (September to March) and 223 

peaks in winter at the rate of about 1 mm/day, and negative during summer (June-August) at 224 

about -1 mm/day.  Most of the models capture this seasonal pattern of P-ET, but underestimate 225 

the magnitude of surface water loss (negative P-ET).  The GISS model substantially 226 

overestimates the magnitude of surface water loss due to its strong overestimate of ET (Fig. 3b), 227 

whereas CCSM4 does not capture the observed negative P-ET in summer.  The multi-model 228 

ensemble mean shows good agreement with that observed due to a balance between 229 

overestimated and underestimated P-ET values among different models. 230 

 The probability distributions (PD) of Tmax, Tmin and rainrate are important in 231 

determining statistical distributions of extreme climatic events.  Fig. 4a shows that Tmax has a 232 

distribution over the SC US that ranges between 23 °C – 33°C or about 72 °F – 90 °F skewed 233 

toward warmer Tmax values.  The models capture the general shape of the PD.  However, they 234 

consistently underestimate the probability of hot to extreme Tmax (33°C – 53°C, or about 90 °F 235 

– 126 °F), and overestimate probability of colder Tmax (-18 °C – 12°C, or 0 °F – 55 °F), except 236 

for MIROC5.  The majority of the models and multi-model ensemble mean also capture the 237 

general pattern of PD of Tmin, although they consistently underestimate probability of cooler 238 

Tmin (-13 °C – -3°C or 10 °F – 27 °F). MIROC5 and CCSM4 also substantially overestimate the 239 

probability of warmer Tmin (17 °C – 27 °C or 63 °F – 81 °F). 240 
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         Fig. 4c shows that the models consistently underestimate of probability of non-rainy days 241 

and violent rainy events (>50 mm/day), and overestimate moderate rainy events (2.5-10 242 

mm/day).  These biases contribute to the overestimate of climatological rainfall (Fig. 3).  243 

HadGEM2-CC and MPI provide the most realistic PD of rainrate.  244 

 How well can models simulate drought and persistent anomalous wet periods?  Figure 5 245 

shows that the models well capture the median, 25% and 75% values of the SPI6 and SPI9, 246 

respectively, between observation and historical simulations for the period of 1951-2005.  247 

However, the comparison of outliners suggests that most of the models underestimate dry 248 

outliners, or extreme to exceptional droughts (-4<SPI6, SPI9<-3).   249 

           250 

b. Atmospheric circulation 251 

         To investigate the underlying causes of the biases in regional surface climate conditions, 252 

this section evaluates modeled atmospheric circulation patterns in this section.  Figure 6 shows 253 

that, except for CCSM4, all other models underestimate the latitudinal gradient of Z500 in 254 

winter, spring and fall compared to observations.  Such a bias implies weak jet strength and more 255 

frequent or/and stronger synoptic disturbances from higher latitudes can reach SC US.  Such a 256 

bias would contribute to strong cold biases in Tmax and Tmin and an overestimation of rainfall 257 

in winter and spring.  CCSM4 has the least cold and wet biases during winter and spring, which 258 

is consistent with its stronger latitudinal gradient of Z500 than other models.   259 

 During summer, the models generally underestimate the strength and area of the 500 hPa 260 

ridge, except for CCSM4 and MIROC5.  A weak 500 hPa ridge could contribute to an 261 

overestimating of rainfall, and favoring lower Tmax in these models.   Lack of such a bias in 262 
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CCSM4 and MIROC5 presumably explains the higher summer Tmax in these two models than 263 

the other models. 264 

         In figure 7, we compare modeled U850 and V850 over the US with that observed.  265 

Modeled U850 over the SC US is more realistic during winter and fall (Fig. 7a).   The models 266 

underestimate westerly U850 in spring, except for CCSM4, MPI and IPSL.   Because strong 267 

westerly U850 during spring can trigger summer drought (Hong and Kalney 2002, Fernando et 268 

al. 2012), its weak bias would likely contribute to spring wet anomalies in the models.    269 

 Figure 8 shows that all the models underestimate southerly V850 in winter.  During 270 

spring, summer and fall, they, except for HadGEM2, also consistently underestimate southerly 271 

V850 over the SC US except for HadGEM2.  Because southerly V850 dominates the transport of 272 

warm and moisture from Gulf of Mexico to SC US, its underestimate probably contributes to a 273 

cold bias in Tmax and Tmin in spring and low biases in surface air q.  However, it’s potential 274 

impact on rainfall is presumably compensated by biases in Z500 and U850.    275 

   276 

3.2 Relationship with interannual and decadal climate variability modes 277 

         Whether or not climate models can adequately represent the connections between 278 

regional climate anomalies and its oceanic forcing is central in determining the frequency and 279 

intensity of droughts and probability of extreme temperatures and rainfall, and is investigated in 280 

this section.  Figure 9 compares the modeled and observed correlation coefficients for the areal 281 

averaged rainfall anomalies over the SC US with the EPW Niño index (Niño3) and the CWP 282 

Niño index (Niño4), respectively.  Observed rainfall over the SC US is significantly positively 283 

(negatively) correlated with El Niño (La Niña), occurs only in winter (DJF).   This seasonal 284 

dependence of correlation is only captured by the GISS-E2R.  The other models either capture 285 
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this relationship in winter, but also exaggerate its seasonal persistence during other seasons 286 

(GFDL-ESM2M, GFDL-ESM2G, MIROC5, IPSL), or show spurious correlation between the 287 

SC US rainfall and ENSO in spring, summer for fall (CCSM4, HadGEM2-CC and MPI-ESM), 288 

or do not show any relationship between the SC US rainfall anomalies and ENSO (MRI-289 

CGCM3).  290 

         The influence of ENSO on SC rainfall anomalies is determined by the ENSO 291 

teleconnection pattern.  Figure 10 shows the spatial pattern of the correlation between the Z500 292 

anomalies and Niño3 index during winter (DJF) when regional rainfall anomalies are 293 

significantly correlated with ENSO indices.   None of the models appear to capture the overall 294 

spatial pattern of the correlation for the period of 1979-2005.  CCSM4, GFDL-ESM2G, GFDL-295 

ESM2M partially capture the dipole of strengthened North American High and a weakened 296 

Aleutian Low.   297 

         Figure 11 shows that the strengthening of North American High related to the CPW Niño 298 

(Niño4) is not as strong as that related to the EPW Niño (Niño4).  Again, none of the models can 299 

entirely capture the spatial pattern of the correlation between Z500 anomalies and Niño3.  300 

However, CCSM4, GFDL-ESM2G, GFDL-ESM2M and MRI partially capture the dipole that 301 

strengthens the North American High and deepens the Aleutian Low, although the positive 302 

anomalous Z500 center over North America is biased too southward compared to that suggested 303 

by NCEP reanalysis.  304 

         We have also evaluated the standard deviations of the Niño3 and Niño4 indices 305 

normalized by those derived from observation.  The results suggest that the normalized standard 306 

deviations of modeled Niño indices in CCSM4, GFDL-ESE2M, GFDL-ESM2G, HadGEM2 and 307 

MIROC5 are close to one.  Thus, the magnitudes of the ENSO variability in of Niño3 and Niño4 308 
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indices are comparable to those observed.  The results also show that the variability of Niño3 and 309 

Niño4 indices in GISS-E2-R, IPSL, MPI and MRI are only about 40% or less than those 310 

observed.  311 

 The relationship between AMO index and the SC US rainfall anomalies is evaluated in 312 

Figure 12.  Despite the suggested AMO influence on North American rainfall in general, no 313 

significant correlation is detected observationally, nor suggested by most of the models over SC 314 

US, except for CCSM4 and IPSL.  These two models suggest an unrealistic correlation between 315 

the SC US rainfall and AMO during spring and winter, respectively.  The lack of significant 316 

correlation between AMO and the SC US rainfall is consistent with previous observational 317 

studies that suggest that AMO influences North American rainfall primarily through its 318 

modulation of ENSO influence (e.g., Hu and Feng 2008).  319 

 Although none of the models can satisfactorily capture the ENSO tele-connection 320 

patterns and its influence on the SC US rainfall anomalies, CCSM4, GFDL-ESM2G, GFDL-321 

ESM2M appear to out-perform other models.  However, CCSM4 overestimates the connection 322 

between the SC US rainfall and AMO.    323 

 324 

3.3 Relationship with global SST warming mode 325 

         How well can CMIP5 models represent the responses of the SC US climate and extremes 326 

to an increase of global surface temperature? To explore this question, we first evaluate the 327 

spatial pattern of the REOF mode of SST anomalies that represents the global increase of SST 328 

for JJA, the season when the ENSO influence on SST is relatively low (Fig. 13).  As the leading 329 

REOF mode of the observed SST anomalies (Schubert et al. 2009), it shows warming over most 330 

of the global ocean, except for over high-latitude North Atlantic and northwestern Pacific, and 331 
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equatorial eastern pacific.  The spatial pattern of this global SST warming mode is best captured 332 

by GFDL-ESM2G and GISS as their leading REOF mode.  CCSM4 and MPI also capture the 333 

general pattern of the warming mode, although they either overestimate the cooling over North 334 

Pacific or over the equatorial Pacific.  In HadGEM2-CC, MIROC5 and GFDL-ESM2M models, 335 

ENSO emerges as the leading REOF mode of SST anomalies.  The global SST warming mode 336 

emerges as the second or even the third leading REOF mode, suggesting these models 337 

underestimate the influence of the global SST warming on SST variation.  338 

         The principle component of the leading REOF mode (PC1) of the observed SST 339 

anomalies suggests a steady warming during 1950-1990, then it has leveled off since 2000.  The 340 

modeled PC1s of SSTs suggest a warming trend since 1970s or 1980s, except for HadGEM2-CC 341 

and MRI-CGCM3.  This difference in temporal behavior of the PC1 maybe in part due to 342 

possible modulation of the global SST warming mode by natural decadal variability and lack of 343 

it in the modeled PC1s. The PCs of the global SST warming mode in HadGEM2-CC and MRI-344 

CGCM3 models show spurious changes during early 20th century, suggesting that the SST 345 

warming is either inadequately modeled or not robust enough for our REOF reanalysis to capture 346 

it.  347 

         Because droughts and summer extreme temperature over the SC US are mostly 348 

influenced by rainfall, we evaluate the linear regression between the SC US rainfall and the PC 349 

of the global SST warming mode for both annual means and JJA season (Fig. 14) to explore 350 

impact of the latter on droughts and extreme temperatures over the SC US.  No models could 351 

capture the positive correlation between the annual mean rainfall anomalies of SC US and the 352 

PC1 of global annual mean SST anomalies.  However, in the summer (JJA) season, CCSM4 and 353 

GFDL-ESM2M both capture the significant increase of the SC US rainfall associated with 354 
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warming of global SSTs as observed, although GFDL-ESM2M may overestimate the rate of 355 

regional rainfall change associated with the global SST warming.  GISS-E2R and MIROC5 show 356 

a significant decrease of the SC US rainfall with the global SST warming, opposite from that 357 

observed.  The other six models do not show any significant change associated with the global 358 

SST warming.  359 

         In short, figures 13 and 14 suggest that CCSM4 and GFDL-ESM2M capture both the 360 

observed global SST warming mode and its link with the SC US rainfall, whereas other models 361 

are unable to adequately capture either the global SST warming mode or its relationship with the 362 

SC US rainfall change. 363 

 364 

3.4 Ranking of model performance  365 

         For assessing overall performance and its implications for the models in projecting 366 

climate change over the SC US, we broadly rank the models according to the metrics and 367 

rationales described in Section 3.3.  Models that realistically capture the patterns of the spatial or 368 

temporal variability, changes and correlation for a selected climate variable are ranked as the top 369 

performing or Class-1 models for that variable.  The models that partially agree with the 370 

observations, including the signs of correlation or changes, are ranked as average performing 371 

(Class-2) models.   Models that show no resemblance to observations, e.g., showing wrong signs 372 

of correlation between regional climate responses to external forcings, are ranked as the under-373 

performing (Class-3) models. Climate projections are based on the response of the regional 374 

climate to warming induced by an increase of global radiative forcing, and anticipated dominant 375 

influence by changes of radiative forcing over natural climate variability on climate conditions at 376 

the end of 21st century.  Thus, we assign more weight to a model’s performance in seasonal 377 
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cycles and relationship with the global SST warming mode than to internal natural variability 378 

such as change associated with ENSO. 379 

         Following the above guidelines, the models’ performance in representing the SC US 380 

regional climate is ranked in Table 2.  The CCSM4 is the only model that is ranked in either 381 

category 1 or 2 in representing the global SST warming mode (GWsst) and its relationship with 382 

the SC US regional rainfall change (αGW).  Thus, it outperforms other models, whose average is 383 

2.0 or higher for these variables, in this key criterion for assessing reliability of the climate 384 

projection. CCSM4, MPI and MRI have seasonal cycle average ranking below 2.0 but more for 385 

the natural variability ranking.  The latter requires more observational and model data than 386 

available to establish statistical significance for its variables (Wittengberg 2009; Deser et al. 387 

2012). 388 

  389 

4. Climate Projections for the Late 21st Century 390 

         To assess climate change over the SC US in the future, we evaluate projected regional 391 

climate conditions for the period of 2071-2100 (referred to as the late 21st century) under the 392 

RCP4.5 and RCP8.5 scenario, respectively, and compare them to the historical simulations for 393 

the period of 1979-2005 (referred to as the recent past) for each model.  Ensemble mean of 394 

individual simulations for each model and each scenario are used for assessing the changes, 395 

except for in figures 15 and 16 to avoid the impact of sampling difference on our comparison 396 

between different models.  The periods of comparison are based on the recommendation of 397 

NOAA MAPP CMIP5 task force for publication in this special issue.  The projections of multi-398 

model ensemble means and those of the best performing model will be compared in our 399 

discussion.  Because of the model biases as shown in Section 3, we will focus more on changes 400 
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of the climate conditions than on absolute values.  For brevity we do not show the analysis of 401 

projected circulation change.   402 

 403 

4.1 Projected changes in surface climate conditions 404 

         Figure 15 shows the projected Tmax distributions for each model over the SC US by the 405 

late 21st century compared to that in the recent past.  Under the RCP4.5 scenario, the individual 406 

models and the multi-model ensemble mean consistently project a more skewed PD toward 407 

warm temperatures, except for MIRCO5. The occurrence of warm temperatures, ranging from 408 

32˚C to 42˚C (89.6˚F to 107.6˚F), increases by 25% to 50% relative to those of recent past.  The 409 

occurrence of Tmax cooler than 3˚C decreases.  The occurrence of Tmax with medium values 410 

(3˚-22˚C) will only change slightly.  The peak of the temperature distribution will remain at 22˚C 411 

- 32˚C, the same as that in the recent past.  MIROC5, on the other hand, projects a shift of peak 412 

Tmax distribution to 32˚C-42˚C (90˚ – 108˚F) in the late 21st century.   413 

 Under the RCP8.5, the projected change of PD patterns are similar to those of RCP4.5 414 

scenario, but warmer Tmax, ranging from 32˚C to 42˚C, will increase by 50%-100% relative to 415 

their occurrence in the recent past.  Although the peak of Tmax distribution will be the same as 416 

projected by the majority of the models, more models (HadGEM2, MPI, MIROC5) project a 417 

shift of the peak Tmax distribution to 32˚C-42˚C. Such projections suggest that the summer 418 

extreme temperatures during the late 20th century will become normal in future. For both 419 

emission scenarios, the projected changes of Tmax distribution are very similar between the 420 

multi-model ensemble mean and the best performing model. 421 

 The project changes of Tmin distribution is shown in Fig. 16.  For both emission 422 

scenarios, the models consistently project more occurrences of Tmin that exceed 22˚C and a 423 
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decrease of Tmin below -3˚C in future.  The occurrence of medium Tmin will not change for 424 

more than a few percentages.  Two-thirds of the models project a shift of peak Tmin distribution 425 

to 17˚C -27˚C by late 21st century under both the RCP scenarios, from 7˚C -17˚C.  These models 426 

also project an increase of the occurrence of Tmin warmer than 27˚C (80.6F) by several folds 427 

under the RCP8.5 scenario.   428 

         Figure 17 shows projected changes of distribution of rainfall intensity in the late 21st 429 

century.  The majority of the models and multi-model ensemble mean suggest an increase of 430 

non-rainy and light rainy days, and a decrease of light to moderate rainy days (0.25-10 mm/day) 431 

for both emission scenarios.  The changes of rainrate distribution are more than twice as strong 432 

for the RCP8.5 scenario as for the RCP4.5 scenario.  The “best performing model” (CCSM4), on 433 

the other hand, projects little change in rainrate distribution under the RCP4.5 scenario. It 434 

projects a slight decrease of non-rainy and light rainy events and an increase of heavy rainfall 435 

days (10-50 mm/day). 436 

         What could cause a preferential increase of warm to hot, and extreme Tmax?  Because 437 

these high Tmax values occur with dry and hot land surface conditions during warm seasons 438 

(e.g., Madden and Williams 1978), we evaluate changes of precipitation, ET, and net surface 439 

water flux in different future seasons in Figure 18.  HadGEM2 and MPI are not included in this 440 

figure because they did not provide projections of ET.  The projected changes are noisy with 441 

large inter-model discrepancies under both emission scenarios.  Under the RCP4.5 scenario, the 442 

multi-model ensemble mean shows weak increase of P and ET in winter and spring.  CCSM4 443 

also projects similar changes of P and ET, but with a stronger increase of rainfall during 444 

February and June, and a weaker decrease of rainfall in late summer, compared to the multi-445 

model ensemble projection.  The multi-model ensemble projection shows a decrease of P-ET or 446 
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an increase of surface water loss to the atmosphere from spring to fall, thus much drier surface 447 

conditions.  In contrast, CCSM4 projects a weak increase of P-ET all year round as a result of its 448 

stronger increase of rainfall, and hence more supply of surface water and runoff.  Because 449 

CCSM4 is the only model (here evaluated) that is capable of reproducing the observed increase 450 

of rainfall of the SC US with the increase of global SST in the recent past, its projected increase 451 

of P-ET may be a result of such capability.  The discrepancy between the projections by multi-452 

model ensemble mean and best performing model suggests that the projected change is not 453 

robust under the lower emission scenario. 454 

 Under the RCP8.5 scenario, the patterns of P, ET, P-ET changes are similar to those of 455 

RCP4.5, but magnitudes of the changes increase.  Both multi-model ensemble projection and 456 

CCSM4 project a decrease of P-ET and an increase of surface water loss during spring, summer 457 

and fall, resultant from a faster increase of ET than the increase of P and also from reduced gap 458 

of P changes between the multi-model ensemble mean and CCSM projections.  Thus, the 459 

projected drying of land surface over SC US appears to be robust under this high emission 460 

scenario.  The projected increases of surface water loss during spring, summer and fall imply a 461 

strong increase of dry spells. These changes can contribute to disproportionally large increase of 462 

warm and hot Tmax as shown in Fig. 15. 463 

 How will drought and prolonged wet anomalies change in future?  Figure 19 compares 464 

the medium, 25% and 75% values of the SPI6 between the historical simulations, the RCP4.5 465 

and RCP8.5 scenarios, respectively.  To gain a prospective about changes from the recent past, 466 

we modified the SPI calculation by using projected monthly rainfall subtracted from the 467 

historical climatological seasonal cycle of rainfall to obtain cumulative rainfall anomalies, which 468 

are then normalized by historical rainfall variability.  Figure 19 shows a lack of consistency in 469 
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the projected changes of the SPI6 distribution.  Except for CCSM4, the SPI6 projected by all 470 

other models does not show changes of median values, but rather more than half of the models 471 

(GFDL-ESM2G, GFDL-ESM2M, ISPL, MIROC5 and MPI) project a greater spread of SPI6 472 

values, implying an increase of stronger droughts and persistent wet anomalies, in the late 21st 473 

century.  The multi-model ensemble mean shows the changes of SPI6 similar to that of most 474 

models, but with a much reduced range of variability due to its averaging across models.  On the 475 

other hand, the “best performing model” (CCSM4) projects a negative shift of the median, 25% 476 

and 75% of SPI6, suggesting more frequent and intense droughts in future.   The negative shift of 477 

the median SPI6 is stronger for the RCP8.5.  The projected changes of SPI9 distributions are 478 

similar to those of SPI6 (not shown). 479 

 480 

5. Conclusions and Discussion 481 

         We have evaluated the performance of nine selected CMIP5 models in representing SC 482 

US regional surface climate, its variability and changes, the key large-scale circulation patterns, 483 

and their links to ENSO, AMO and the global scale SST warming mode, as a basis to assess the 484 

fidelity of these models for climate projections over this region.  A novel aspect of this 485 

evaluation is its focus on the sensitivity of the regional climate response to the global scale 486 

natural climate variability and change and the key circulation patterns that control the regional 487 

droughts. 488 

         The evaluation suggests that the models generally adequately reproduce the observed 489 

patterns of the seasonal cycles and the probability distributions of the surface temperature, 490 

humidity and rainfall.  However, the majority underestimates Tmax and q and overestimate Tmin 491 

and P, especially during spring and early summer.  The excessive rainfall is due to an 492 
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underestimate of non-rainy and light rainy days (<0.25 mm/day) and an overestimate of 493 

moderate rainy days (0.25-10 mm/day).  These models also consistently underestimate the 494 

occurrence of days with heavy to violent rainfall events (>10 mm/day).  Underestimates of the 495 

latitudinal gradient of the mid-tropospheric (500 hPa) geopotential height in winter and spring, 496 

the strength and area of the mid-tropospheric high, and westerly winds in the lower troposphere 497 

probably all contribute to the surface wet and cool biases over the SC US. 498 

 The models appear to reproduce the values of median, 25% and 75% levels of SPI6 and 499 

SPI9 values, despite their wet biases in rainfall climatology and inadequate links between SC US 500 

rainfall, ENSO and AMO indices in the majority of the models.  The majority of the models 501 

appear to underestimate the occurrence of extreme to exceptional droughts.  However, such 502 

uncertainty could be artifact of insufficient samples available for the 55-year analysis period.  503 

Only a few models (CCSM4, GFDL-ESM2G and GFDL-ESM2M) partially capture the tele-504 

connection pattern associated with the EPW (Niño3) and CPW Niño (Niño4) index, respectively.  505 

However, these models tend to overestimate persistence of the ENSO influence on SC US 506 

rainfall anomalies, and are unable to capture the seasonality of such influences. CCSM4 and 507 

IPSL overestimate the correlation between SC US regional rainfall anomalies and AMO.  Such 508 

uncertainties highlight the challenge of modeling the impact of ENSO on regional rainfall in 509 

global climate models.   510 

 Several models (CCSM4, GFDL-ESM2G, GISS, and MPI) appear to realistically capture 511 

the global SST warming mode, as represented by the leading mode of the Rotated Empirical 512 

Orthogonal Function (REOF) of the global SST anomalies.  However, only CCSM4 simulates its 513 

relationship with an increase of rainfall over the SC US.  Inadequate representation of the 514 

modeled rainfall response to the increase of global SSTs by the majority of the models raises a 515 
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question as to whether the multi-model ensemble projections are more or less reliable than the 516 

single “best performing model” for projecting the future drought and extreme temperatures over 517 

the SC US. 518 

         Overall, CCSM4 outperforms the other models in representing the relationship between 519 

SC US rainfall and the global SST warming mode, seasonal cycles of large-scale atmospheric 520 

circulation patterns.  CCSM4 is also one of the few models that partially capture the tele-521 

connection pattern associated with ENSO and the relationships between the SC US rainfall 522 

anomalies and ENSO.  In addition to uncertainty of the models’ physics, the apparent poor 523 

performance of the ENSO tele-connection patterns could be in part due to insufficient sampling 524 

of ENSO within our short analysis period (Wittengberg 2009; Stevenson et al. 2012).  525 

 Ensemble projections by the RCP4.5 and RCP8.5 experiments for the period of 2071-526 

2100 are compared to those simulated by the historical simulations for the period of 1979-2005, 527 

to assess future changes over the SC US.  Because the majority of the models share some 528 

common biases, we compare the multi-model ensemble projections with that of “best performing 529 

model” (CCSM4) to assess the robustness of the projections.  Both multi-model ensemble mean 530 

and CCSM4 consistently project that a) the occurrence of Tmax ranging from 32˚ to 42˚C (~90˚ 531 

F to 108 ˚F) will increase by 25% to 50% in future relative to their occurrence in recent past for 532 

the RCP4.5 scenario, and their frequency of occurrence will increase 50%-100% for the RCP8.5 533 

scenario.  The occurrence of colder Tmax (<3˚C) will decrease.  The distribution of Tmax will be 534 

skewed toward warmer temperature, but the peak will remain the same.  b) The peak of the Tmin 535 

distribution will shift by 10˚C (18˚F) to 17˚C - 27˚C (63˚F -81˚F).  The occurrence of below 536 

freezing Tmin will decrease under the RCP4.5 scenario.  Under the high emission RCP8.5 537 
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scenario, the occurrence of Tmin exceeding 27˚C (80.6 F) could increase several times relative to 538 

that in recent past.   539 

         There are large discrepancies in projected changes of distribution of rainrate, P, ET and 540 

P-ET between individual models, the multi-model ensemble mean and the best performing 541 

model.  Under the RCP4.5 scenario, the majority of the models and multi-model ensemble mean 542 

project a future increase of non-rainy and light rainy days (0-0.25 mm/day) and a decrease of 543 

light to moderate rainfall (0.25-10 mm/day), whereas CCSM4 projects little change in the rain 544 

rate distribution.  Multi-models ensemble projections suggest a weak increase of P-ET winter, 545 

spring and fall and a decrease of P-ET in summer.  In contrast, CCSM4 projects an increase of P-546 

ET in winter, spring, early summer and fall, and a small decrease of P-ET in late summer.  Most 547 

models project a wider spread of SPI6 and SPI9 or increased intensity of both droughts and 548 

persistent wet periods, without a clear shift of the medium values for SPI6 and SPI9. CCSM4, on 549 

the other hand, shows a negative shift of SPI6 and SPI9 medium values without an increase in 550 

their spread. 551 

         Under the RCP8.5 scenario, the majority of the models and multi-model ensemble 552 

projections suggest a stronger change of rainrate distribution than those of RCP4.5 but without 553 

systematic changes of SPI6 and SPI9 distributions.  CCSM4, on the other hand, shows a weak 554 

decrease of non-rainy and light-rainy days and an increase of heavy rainfall (10-50 mm/day), but 555 

a more negative shift of median SPI6 and SPI9 values from those of RCP4.5. 556 

 The patterns of the changes of P, ET and P-ET are similar to those of RCP4.5, but 557 

magnitudes of the changes increase.  Both multi-model ensemble projection and CCSM4 project 558 

a decrease of P-ET and an increase of surface water loss during spring, summer and fall, a 559 

consequence of their stronger increase of ET and summer P in both the multi-model ensemble 560 
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mean and CCSM projections.  Thus, the projected drying of land surface over SC US appears to 561 

be robust for this high emission scenario.  562 

 Our assessment of the climate projections by the CMIP5 models suggest that, while a 563 

climatic shift of the hydrological cycle over SC US for weak global warming is questionable, the 564 

projections for an climatic drying over this region under a growing emission scenario (RCP8.5) 565 

seems to be robust.  Thus, future climatic drying over SC US may be rather sensitive to future 566 

emission policies. 567 

         One of the main limitations of our assessment is its insufficient representation of the 568 

statistical distributions of the climate variables we evaluate due to both short duration of 569 

available observations, model simulations and limited ensemble members of simulations.  For 570 

the regions such as SC US, multi-model ensembles cannot effectively remove common biases 571 

among the majority of the models.  However, a large number of ensemble simulations by the 572 

“best performing models” could provide an alternative and complementary approach to reduce 573 

the uncertainties of the climate projections.    574 

 575 
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 770 
Figure Captions: 771 
 772 
Fig. 1: Spatial domain of the SC US defined in this study. 773 
 774 
Fig. 2: Seasonal cycles of daily maximum and minimum surface temperature (Tmax, Tmin) and 775 
specific humidity (qsfc) derived from observations and historical simulations of the CMIP5 776 
models for the period of 1950-2005. The numbers in the parentheses are the model ensembles.  777 
 778 
Fig. 3: As in Fig. 2 but for seasonal cycles of precipitation (P), evapotranspiration (ET) and the 779 
net downward water flux (P-ET).  780 
 781 
Fig. 4: Observed and modeled PDF of Tmax (top), Tmin (middle) and rainrate (bottom), and 782 
PDF of modeled minus observed rainrate for each model for the period of 1950-2005. One 783 
ensemble member from each model is used. 784 
 785 
Fig. 5: Box plots comparing observed and modeled SPI6 and SPI9 derived from historical 786 
simulations of the CMIP5 models.  The red lines at the centers of the boxes represent the median 787 
of the SPI values, whereas the upper and lower ends of the boxes represent 75% and 25% levels 788 
of the SPI values.  Red crosses represent the outliners of the SPI values.  789 
 790 
Fig. 6: Comparison of the modeled Z500hPa pattern by each of the CMIP5 models with that of 791 
NCEP-CDAS1.  792 
 793 
Fig. 7: As in Fig. 6, but for U850.  794 
 795 
Fig. 8: As in Fig. 6, but for V850.  796 
 797 
Fig. 9: Correlations between Niño4, Niño3 and the SC US rainfall.  “Star” indicates significant 798 
correlation coefficient at 95% confidence level using the Student t-test. 799 
 800 
Fig. 10: Correlation pattern between 500hPa geopotential anomalies and Niño3 index obtained 801 
from NCEP reanalysis and the historical simulations by the nine CMIP5 models for the period of 802 
1979-2005. 803 
 804 
Fig. 11: As in Fig. 10 but for correlation with the Niño4 index. 805 
 806 
Fig. 12: Correlation coefficient between the SC US rainfall anomalies and AMO index.  “Star” 807 
indicates significant correlation coefficient at 95% confidence level using the Student t-test. 808 
 809 
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Fig. 13: The leading mode of REOF (REOF1) derived from observed and modeled SSTA from 810 
the nine CMIP5 models.  811 
 812 
Fig. 14: comparing linear regression between the SC US P and T with the warming modes 813 
between models and observations.  “Circle” indicates significant correlation coefficient at 95% 814 
confidence level using the Student t-test. 815 
 816 
Fig. 15: Projected changes of surface daily maximum temperature during period of 2071-2100 817 
under the RCP4.5 and RCP8.5 scenarios, compared to the historical simulations of the CMIP5 818 
models and observation during the period of 1979-2005.  819 
 820 
Fig. 16: As in Fig. 15 but for Tmin. 821 
 822 
Fig. 17: Projected changes of rainrate distribution between the period of 2071-2100 and that of 823 
1979-2005 for the RCP4.5 (red) and RCP8.5 (blue) scenarios for the nine CMIP5 models. 824 
 825 
Fig. 19: Projected SPI6 over the SC US based on projected rainfall for the period of 2071-2100 826 
for the RCP4.5 and RCP8.5 scenario, respectively, and rainfall climatology and variability from 827 
the historical simulations for the period of 1979-2005. 828 
 829 
 830 
 831 
 832 
 833 
 834 

835 
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Table 1. Description of CMIP5 models used in this study 836 
Model (Fig 
marker) 

Institute (Country) 
Available 
Ensembles 

Components 
(Resolutions) 

Calendar Reference 

CCSM4 
(A) 

National Center for 
Atmospheric Research 
(USA) 

6 
F09_g16 
(0.9×1.25_gx1v6) 

No leap 
Gent et al., 
2011 

GFDL-
ESM2M 
(B) 

NOAA/Geophysical 
Fluid Dynamics 
Laboratory (USA) 

1 

Atm: AM2 
(AM2p14, M45L24) 
Ocn: MOM4.1 (1.0° 
lat ×1.0° lon, 
enhanced tropical 
resolution: 1/3 on 
the equator) 

No leap 
John Dunne 
et al., 2012 

GFDL-
ESM2G 
(C) 

NOAA/Geophysical 
Fluid Dynamics 
Laboratory (USA) 

1 

Atm: AM2 
(AM2p14, M45L24) 
Ocn: MOM4.1 (1.0° 
lat ×1.0° lon, 
enhanced tropical 
resolution: 1/3 on 
the equator) 

No leap 
John Dunne 
et al., 2012 

GISS-E2-R 
(D) 

NASA/Goddard 
Institute for Space 
Studies (USA) 

5 
Atm: GISS-E2 (2.0° 
lat ×2.5° lon) 
Ocn: R 

No leap 
Schmidt et 
al., 2006 

HadGEM2-
CC 
(E) 

Met Office Hadley 
Centre (UK) 

3 

Atm: HadGAM2 
(N96L60) 
Ocn: HadGOM2 
(Lat: 1.0-0.3 Lon: 
1.0 L40) 

360 d/y 

Collins et 
al., 2011; 
Martin et al., 
2011 

MPI-ESM-
LR 
(F) 

Max Planck Institute 
for Meteorology 
(Germany) 

3 

Atm: ECHAM6 
(T63L47) 
Ocn: MPIOM 
(GR15L40) 

Gregorian 

Raddatz et 
al., 2007; 
Marsland et 
al., 2003 

IPSL-CM5A-
LR 
(G) 

Institut Pierre Simon 
Laplace (France) 

5 

Atm: LMDZ4 
(96×95×39, 1.875° 
lat ×3.75° lon) 
Ocn: ORCA2 
(2×2L31, 2.0° lat 
×2.0° lon) 

No leap 
Marti et al., 
2010 

MIROC5 
(H) 

AORI, NIES & 
JAMSTEC (Japan) 

4 

Atm: AGCM6 
(T85L40) 
Ocn: COCO 
(COCO4.5) 

No leap 
Watanabe et 
al., 2010 

MRI-CGCM3 
(I) 

Meteorological 
Research Institute 
(Japan) 

3 

Atm: GSMUV 
(TL159L48) 
Ocn: COM3 
(1×0.5L51) 

Gregorian 
Yukimoto et 
al., 2011 

 837 
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Table 2: Ranking of model performance for SC US regional climate change 838 
Variables Models 
 CCS

M4 
GFDL-
ESM2G 

GFDL-
ESM2M 

GISS-
E2-R 

HadGEM2 MPI IPS
L 

MIROC5 MRI 

  
 Correlation with global SST warming: 
aGW 1 3 1 3 2 3 3 3 3 
GWSST 2 1 3 1 3 2 2 3 2 
Subtotal 1.5 2 2 2 2.5 2.5 2.5 3 2.5 
  
 Seasonal cycle: 
Tmax 1 2 2 2 1 2 3 1 2 
Tmin 2 1 1 1 3 1 3 2 1 
q 1 1 2 1 3 1 3 1 1 
Subtotal 1.3 1.3 1.7 1.3 2.3 1.3 3 1.3 1.3 
          
PDTmax 3 3 3 3 3 3 3 3 2 
PDRR 2 2 2 2 2 2 2 2 1 
P 1 3 3 2 3 1 2 2 3 
ET 3 2 2 3 2 2 2 2 2 
SPI6 2 2 2 2 2 2 2 2 2 
SPI9 2 2 2 2 2 2 2 2 2 
Subtotal 2.2 2.3 2.3 2.3 2.3 2 2.2 2.2 2 
          
Z500 2 3 3 3 2 2 3 2 3 
U850 1 2 2 2 2 1 1 2 2 
V850 2 2 2 2 1 2 2 2 2 
Subtotal 1.7 2.3 2.3 2.3 1.7     1.7 2 2 2.3 
          
 Natural variability 
rp,Niño3 3 2 2 1 3 3 3 2 3 
SZ500, 
Niño3 

2 2 2 3 3 3 3 3 3 

rp,Niño4 3 2 2 1 3 3 3 2 3 
SZ500, 
Niño4 

2 2 2 3 3 3 3 2 3 

Subtotal 2.5 2 2 2 3 3 3 2.3 3 
 839 
Ranking 1: Generally realistic pattern, Ranking 2: partially realistic, Ranking 3: No resemblance to those observed  840 
αGW: Linear regression coefficient between SC US summer rainfall anomalies and PC of the global SST warming 841 
mode of the REOF analysis of global SST anomalies for the period of 1950-2005; GWSST: Spatial pattern of the 842 
global SST warming mod; PDTmax: Probability distribution of daily maximum surface temperature. PDRR: 843 
Probability distribution of rainrate; rp,Niño3, rp,Niño4: Correlation coefficient between SC US rainfall anomalies and 844 
Niño3 index and Niño4 index, respectively; SZ500, Niño3, SZ500, Niño4: Spatial patterns of the regression between 845 
Z500 anomalies and Niño3 index and Niño4 index, respectively. 846 
 847 
 848 

849 



 36 

 850 
 851 

 852 
Fig. 1: Spatial domain of the SC US defined in this study. 853 
 854 
 855 
 856 

 857 
 858 
 859 
Fig. 2: Seasonal cycles of daily maximum and minimum surface temperature (Tmax, Tmin) and 860 
specific humidity (qsfc) derived from observations and historical simulations of the CMIP5 861 
models for the period of 1950-2005. The numbers in the parentheses are the model ensembles.  862 
 863 
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 866 
 867 
 868 
 869 
 870 
 871 

 872 
 873 
 874 
 875 
Fig. 3: As in Fig. 2 but for seasonal cycles of precipitation (P), evapotranspiration (ET) and the net 876 
downward water flux (P-ET). 877 
 878 
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 893 
 894 
 895 
 896 

 897 
 898 
Fig. 4: Observed and modeled PDF of Tmax (top), Tmin (middle) and rainrate (bottom), and PDF of 899 
modeled minus observed rainrate for each model for the period of 1950-2005. One ensemble member 900 
from each model is used. 901 
 902 
 903 
 904 
 905 
 906 
 907 
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 908 
 909 
 910 
 911 
 912 
 913 

 914 
 915 
Fig. 5: Box plots comparing observed and modeled SPI6 and SPI9 derived from historical simulations of 916 
the CMIP5 models.  The red lines at the centers of the boxes represent the median of the SPI values, 917 
whereas the upper and lower ends of the boxes represent 75% and 25% levels of the SPI values.  Red 918 
crosses represent the outliners of the SPI values.  919 
 920 
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Fig. 6: Comparison of the modeled Z500hPa pattern by each of the CMIP5 models with that of NCEP-940 
CDAS1.  941 
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Fig. 7: As in Fig. 6, but for U850.  948 
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Fig. 8: As in Fig. 6, but for V850.  954 
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Fig. 9: Correlations between Niño4, Niño3 and the SC US rainfall.  “Star” indicates significant 965 
correlation coefficient at 95% confidence level using the Student t-test. 966 
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 994 
Fig. 10: Correlation pattern between 500hPa geopotential anomalies and Niño3 index obtained 995 
from NCEP reanalysis and the historical simulations by the nine CMIP5 models for the period of  996 
1979-2005. 997 
 998 
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Fig. 11: As in Fig. 10 but for correlation with the Niño4 index. 1021 
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Fig. 12: Correlation coefficient between the SC US rainfall anomalies and AMO index.  “Star” 1043 
indicates significant correlation coefficient at 95% confidence level using the Student t-test. 1044 
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 1064 
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 1066 
Fig. 13: The leading mode of REOF (REOF1) derived from observed and modeled SSTA from the nine 1067 
CMIP5 models.  1068 
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Fig. 14: comparing linear regression between the SC US P and T with the warming modes 1088 
between models and observations.  “Circle” indicates significant correlation coefficient at 95% 1089 
confidence level using the Student t-test. 1090 
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 1109 
Fig. 15: Projected changes of surface daily maximum temperature during period of 2071-2100 1110 
under the RCP4.5 and RCP8.5 scenarios, compared to the historical simulations of the CMIP5 1111 
models and observation during the period of 1979-2005.  1112 
 1113 
 1114 
 1115 
 1116 
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Fig. 16: As in Fig. 15 but for Tmin. 1128 
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Fig. 17: Projected changes of rainrate distribution between the period of 2071-2100 and that of 1138 
1979-2005 for the RCP4.5 (red) and RCP8.5 (blue) scenarios for the nine CMIP5 models. 1139 
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Fig. 18: Changes of climatological seasonal cycles of P, ET and P-ET between the period of 1159 
2071-2100 for the RCP4.5 and RCP8.5 scenarios and those from the historical simulations for 1160 
the period of 1979-2005. 1161 
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Fig. 19: Projected SPI6 over the SC US based on projected rainfall for the period of 2071-2100 1188 
for the RCP4.5 and RCP8.5 scenario, respectively, and rainfall climatology and variability from 1189 
the historical simulations for the period of 1979-2005. 1190 
 1191 


